教 师 的 责 任


来源南安家教吧 日期:2011年06月14日 点击:555次 分类教学资源 上一篇怎样让学生在课堂上学得轻... 下一篇如何培养发散思维
在当今中国教育界使用较为频繁的几个词汇恐怕非“创新教育、素质教育、减负”莫属,它们三者之间的关系如何呢?我们认为,“素质教育”的核心就是创新教育,而减负是推行创新教育和素质教育的基础,学生过重的学习负担从何而来?这有多方面的原因,*先是社会原因,其核心是传统的劳动人事制度。其次是教育体制的原因,其核心是高考制度与学校、教师评价制度。较后是教师方面的原因,人们一谈到减负,就会说取消高考问题就能解决,实际上,高考会在相当长的一段时期内存在,当然需要不断改革,尤其使命题更科学。笔者认为学生过重学习负担的产生,或者换句话说,减轻学生过重的学习负担,教师有不可推御的责任。
人们经常谈论小学生过重的学习负担,其原因何在?其表现形式如何?我们认为可用四个字来概括――机械重复,中学尤其高中数学教学中,学生过重的学习负担主要表现何在?或者说教师该负什么责任?我们认为有两点值得特别注意,其一是“无节制的扩展知识面”,其二是“施教不因材”。
一、         无节制的扩展知识面
它的含义就是在教学中不断地补充一些公式、补充一些特殊的解题方法,这在高中数学教学中几乎是屡见不鲜――尤其是在高三数学总复习中,正因为如此,高考考试大纲曾多次明确限制这种无限扩充知识面的行为――如异面直线之间的距离,异面直线上两点间的距离公式,利用递推关系求数列的通项公式等。
在教学中,这些补充的公式或方法往往只对一些*其特殊的问题有效,方法缺乏普遍性久而久之学生认为学数学就是不断地套公式、套题型、一但试题稍加变化,学生就无所适从,而且这些补充的众多公式与方法大多是不加证明的――因为时间不允许,更没有学生探索、分析、比较的发现过程,学生大多是凭记忆死记它们,这大地增加了学生的记忆负担,这样的学生会有想象力和创造性思维吗?
那么这种补充是否有必要呢?有人一定会振振有词地说补充后解决一些高考题非常有效,的确,我们一些高考命题专家就是上述无节制补充公式和方法的爱好者,但这绝不是高考命题的主流,即便是无节制补充公式和方法的爱好者为迎合某个补充公式或某种补充技巧方法的“好题用我们的基本公式与基本方法是不难解决的.下面就以高中代数数列中及解析几何直线中的几个例子来加以具体地说明――这些例子都有高考的背景。
 
例一、   已知等差数列{an}a2+a3+a10+a11=48,S12
注:这是非常常见的“好题”――尤其为那些补充过等差数列的一条性质的人所推崇,这条补充的性质就是am+an=ap+aq,其中m+n=p+q用这条性质很容易解决这一问题(略去解题过程,因为这是众所周知的),笔者的观点是:确定一个等差数列一般只需要确定*项与公差,因此一般有关等差数列的问题的解决关键是寻找*项与公差,当然这对本题来说不可能,因为只有一个条件,只能列出一个关于*项与公差的方程,此时我们应该如何解决问题,一般地,如何面对未知数的个数大于方程的个数,对此我们有两种选择,第一、消元;第二、直接研究已知与未知的关系――当然是以*项与公差为参变量,解法如下:
法一:由已知有:a1+d+a1+2d+a1+9d+ a1+10d=48
4a1+22d=48,    a1=(2411d)/2
S12=12a1+6×11d=12(2411d)/2+6×11d=6×24=144
法二、仿上法有:2a1+11d=24
S12=12a1+6×11d62a1+11d)=6×24=144
      对于上述的解题方法,如果不加思考,任何人都会说法一与法二比常用方法繁,但常用方法的简单是有代价的,即*先需补充公式,这补充的公式也许对于终身从事数学教学的高中数学教师来说是非常显然的,但对于要学习十几门学科、学习能力各不相同的高中生来说恐怕就是负担了,而法一与法二虽然比流行作法复杂,但它对我们是有补偿的,第一是不需要额外补充公式,第二、这两种方法都有普遍性。
例二、   等差数列{an}中,若Sm=30,S2m=100,S3m
注:这是一九九六年的全国高考题,为了做这一道高考题,比较常见的方法就是先补充一条性质“在等差数列中,由相邻的、连续的、相等的项的和构成的数列也是一个等差数列”,一般来说,笔者反对这样做,实际上用解决等差数列问题的常规方法――寻找公差与*项的方法就很容易解决,即:
  这种解法主要是解一个含有参数m的二元一次方程,这对于一个初中生都是完全可能的。
例三、   等比数列中,Sn=48,S2n=60,S3n
 本题就是上述例2的变种,常见的方法是先补充一条性质――与例二中补充的类似,笔者建议用解决等比数列问题的基本方法――寻找*项与公比来解决这一问题,即:
直接解出a1q当然可以,但运算较繁
考虑到
若作换元 则有:
48X1Y)及60X1Y2)解这个方程组有:Y14X64
所以:S3nX1Y3)=64[1(1/4)3]63
在高中数学教学中,象上述补充公式或方法的情况非常普遍,像解析几何直线这一章中,对称问题因为是一个重要知识点,不少教师就要求学生记住补充公式――点P 关于直线AXBYC0的对称点的坐标公式,稍微仁慈一点的教师就要求学生记住一个点关于直线X±Y